Page No... 1

NEW SCHEME

EC42

USN

Fourth Semester B.E. Degree Examination, July/August 2005

EC/TE/BM/ML/EE/IT Power Electronics

Time: 3 hrs.]

[Max.Marks: 100

Note: 1) Answer any FIVE full questions.
2) All questions carry equal marks

1. (a) Explain the turn-on and turn off characteristics of the SCR.

(8 Marks)

- (b) A thyristor has a forward characteristic which may be approximated by a straight line shown in the following figure. Calculate the mean power loss for
 - a continuous on state current of 23 A.
 - ii) a half sine wave of mean value 18A
 - iii) A level current of 39.6A for one half cycle.

(6 Marks)

- (c) The input voltage to circuit shown below is $V_s=200volts$ with a load resistance of $R=10\Omega$ and a load inductance of $L=50\mu H$. If the damping ratio is 0.7 and discharging current of capacitor is 5A, determine:
- i) the values of R_s & C_s
- \sim ii) Maximum $\frac{dv}{dt}$

(6 Marks)

2. (a) List the different types of power electric circuits.

(4 Marks)

(b) Describe briefly the various base drive control methods used in Juverion transistors. (10 Marks)

-- ១៩០ ៩៤៩%

- (c) In the circuit shown the BJT is acting as a chopper switch at a frequency of 15 KHz. E_{DC} =240V and load current is 100 Amps. The switching times are $t_d=0,\ t_r=1.5\mu sec$ and $t_f=0.7\mu sec$. Calculate the values of
 - i) L_s and C_s
 - ii) R_8 for critically damped conditions
 - iii) R_s if the discharge current is limited to 5% of load current
 - iv) Power loss due to snubber neglecting effect of inductor L_s on voltage of C_s . Assume that $V_{ce(sat)}=0$. (6 Marks)

- 3. (a) Distinguish clearly between natural commudation and forced commutation.
 (8 Marks)
 - (b) With the help of a neat diagram and associated waveforms, explain the operation of a complementary commutation circuit. Derive an expression for the turn-off time assuming a resistive load.

 (8 Marks)
 - (c) For the commutation circuit shown in the following figure, $C=20\mu F$ and $L_1=25\mu H$. The initial capacitor voltage is equal to input voltage i.e., $V_o=V_s=200$ volts. If the load current I_m varies between 50A and 200 A, determine the variations in circuit turn-off. Derive any formulae you use.

- 4. (a) Compare and contrast on-off control with phase control as applied to AC voltage controllers.
 - (b) A single phase half wave AC voltage controller shown in the following figure feeds power to a resistive load of 6Ω from 230V, 50Hz source. The firing angle of SCR is $\alpha = \frac{\pi}{2}$. Calculate:
 - i) Rms value of output voltage
 - ii) Input power factor
 - Average input current. Derive any formulae you use for atleast two iii) subdivisions.

(10 Marks)

- (c) Explain why short duration pulses are not suitable for AC voltage controller with inductive loads.
- 5. (a) A three phase fully controlled converter is operating with a highly inductive load. The load current is continuous and ripple free equal to Io Determine:
 - i) Rms supply current
- ii) Displacement factor
- iii) Distortion factor
- v) Harmonic factor.
- iv) Power factor

(10 Marks)

- (b) A single phase half wave rectifier has a transformer secondary voltage of 230 volts, 50 Hz and supplies a purely resistive load of $R = 1\Omega$. If the average output voltage is 25% of the maximum possible value of DC output voltage. Calculate: (10 Marks)
 - Delay angle of thyristor
 - Rms and average value of output current
 - iii) Rms and average volume of thyrisor current
 - iv) Input power factor.
- **6.** (a) Explain in detail how choppers are classified.

(10 Marks)

- (b) For an ideal type class A chopper circuit $V_s=220volts,\ R=5\Omega,\ L=7.5mH,\ f=1KHz$ and E=0. Duty cycle K=0.5. Calculate :
 - $I_{min} \& I_{max}$
 - ii) ΔI i.e., peak to peak ripple current.
 - iii) Average and Rms value of load current.
 - iv) Effective input resistance of chopper.
 - Rms chopper current.

(10 Marks)

7. (a) Define the performance parameter and inverters.

(4 Marks)

- (b) With necessary waveforms explain the operation of a single phase half-bridge inverter.

 (10 Marks)
- (c) For a type A chopper circuit, $E_{dc}=220V,\ f=500Hz.$ Duty cycle k=0.3 and load $R=1\Omega,\ L=3mH$ and E=23 Volts. Compare the following quantities.
 - Check whether the conversion is continuous or not.
 - ii) Average o/p current
 - iii) $I_{max} \& I_{min}$

(6 Marks)

- 8. (a) With the help of a neat diagram and associated w/F's, explain the operation of a three phase inverter employing 120° conduction strategy. (10 Marks)
 - (b) Explain:

1-186 4

- i) Phase displacement technique.
- ii) Multiple pulse width modulation technique.
 used for controlling the output voltage of a single phase inverter. (10 Marks)

** * **